
Chest X-Ray Scan Classification

Shoumik Majumdar Shubhanghi Jain
CS 585 Final Project Report

I. TASK 1 : BINARY CLASSIFICATION

For this task, we decided to run three pretrained
models along with our own model. we ran all
four models on the training data with default
hyperparameters to get baseline. Then based on
these baselines decided to go ahead with VGG16
as it gave the best baseline results among all 4
models.

A. Self Created Model

1) Architecture:
• we used 2 convolution layers followed by

pooling layers.
• For both the convolution layers, we used 64

filters with a kernel size of (3x3), stride of 1
and no padding.

• In the 1st dense layer, 256 nodes with the
relu activation function followed by a dropout
layer with a dropout probability of 0.25 is
used.

• The final dense layer has 1 node with a
sigmoid activation as we are dealing with a
binary classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.005 for
40 epochs. The loss function used is binary
crossentropy.

2) Results: On analysis we realized that this
model did poorly because it have a large number
of parameters(23,935,041) and only around 130
images to train. we tried a much shallow network
as well but that did not improve the results.



B. VGG16 base feature extractor
The second model that we used as a baseline is

the VGG16 based model. we decided to use the
pretrained weights trained on Imagenet and added
our own fully connected layers at the top.

1) Architecture:
• VGG16 is a convolutional neural network

that contains 16 layers and is pre-trained on
Imagenet is used as base feature extractor.

• It has a total of 21,137,729 parameters
(Trainable: 6,423,041 and Non Trainable:
14,714,688).

• In the first fully connected dense layer, we
used 256 nodes with the relu activation func-
tion followed by a dropout layer with a
dropout probability of 0.25.

• The final dense layer has 1 node with a
sigmoid activation as we are dealing with a
binary classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.005 for
40 epochs. we used binary crossentropy as a
loss function.

2) Results: At the end of 40 epochs, VGG16
based model had a training accuracy of around
96% and validation accuracy of around 90%.

C. VGG19 base feature extractor

The third model that we used as a baseline was
the VGG19 based model. Again, we decided to use
the pretrained weights from imagenet and added
our own fully connected layers at the top.

1) Architecture:
• The VGG19 is a convolution neural network

with 19 layers having 3 more convolution
layers than VGG16.



• It has a total of 26,447,425 parameters
(Trainable: 6,423,041 and Non Trainable:
20,024,384)

• In the first fully connected dense layer, 256
nodes with the relu activation function fol-
lowed by a dropout layer with a dropout
probability of 0.25 is used.

• The final dense layer has 1 node with a
sigmoid activation as we are dealing with a
binary classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.005 for
40 epochs. The loss function used is binary
crossentropy.

2) Results: The VGG19 model also did fairly
well with a training accuracy of around 91% and
valiation accuracy of around 95%.

D. ResNet50
The last pretrained mdoel we used in this task

is the ResNet50. As earlier, we used pretrained
weights on the imagenet dataset and added our
own dense layers at the top.

1) Architecture:
• ResNet50 is a variant of ResNet model which

has 48 Convolution layers along with 1 Max-
Pool and 1 Average Pool layer.

• It uses the concept of Residual blocks which
uses activations from previous layers using
skip connections in an attempt to avoid van-
ishing gradients and keep lowe r layers of the
network relevant.

• In the 1st dense layer that we added on top
of the ResNet5feature extractor, 256 nodes
with the relu activation function followed by
a dropout layer with a dropout probability of
0.25 is used.

• The final dense layer has 1 node with a
sigmoid activation as we are dealing with a
binary classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.005 for
40 epochs. The loss function used is binary
crossentropy.

2) Results: The ResNet50 model has very good
training accuracy at around 98% but very poor
generalization at 50%. Overall the model had low
bias and high variance.



E. Tuned VGG16
In this section, we decided to go ahead with the

VGG16 model as it had encouraging baselines. It
is also a smaller model than VGG19 and hence
we decided to further tune the VGG16 based
model. For parameter tuning, we used sklearns
GridsearchCV function. Hyper parameters which
are tuned are Learning rate, Dropouts and Activa-
tion function and epochs. we ran the model using
3-folds for accurate and better results. Below are
the values used for hyper parameters tuning:

• learning rate: [0.001,0.005,0.01,0.05,0.1]
• epochs: [40,80,120]
• activation:[’sigmoid’,’relu’]
• dropout: [0.15,0.20,0.25]

Through GridsearchCV, we found the best hyper
parameters to be:

• learning rate: ’0.001’
• epochs: ’120’
• activation:’relu’
• dropout: ’0.2’

1) Architecture:
• we used VGG16 pretrained on Imagenet as

base feature extractor.

• In the first fully connected dense layer, 256
nodes with the relu activation function fol-
lowed by a dropout layer with a dropout prob-
ability of ’0.20’ is used which is optimized
though GridsearchCV.

• The final dense layer had 1 node with a
sigmoid activation as we are dealing with a
binary classification problem.

• The model is fitted using the Adam optimizer
with a learning rate of 0.001 for 120 epochs.
The loss function used is binary crossentropy.

2) Results: After tuning and training the model,
we got a validation accuracy of 100% and a
training accuracy of 96%. The validation loss con-
verged to close to 0 and the traning loss was very
low at 0.1068. Overall, we can see that the model
performance improved from that of the baseline
VGG16.

F. TSNE Plot

t-Distributed Stochastic Neighbor Embedding (t-
SNE) is a widely used technique for dimensional-
ity reduction that is particularly well suited for the
visualization of high-dimensional datasets.



We decided to extract features from our 1st
dense layer and plot the features. We can see that
our model performed very well except one false
positive between the 2 classes.

G. CPU vs GPU speedup
For the speed up, we decided to compare the

speeds using a toy problem. we compared the time
required by the CPU and GPU to run a convolution
task of convolving 32 filters of size(3x3x3) over
120 images of size (224x224x3). we ran this entire
process 50 times and compared the speed. we did
so in an attempt to replicate the size of image
we used in this challenge, the number of images
we had and the size of the filter we used in our
architecture.

It takes the CPU around 14.5 seconds to perform
this task while it takes the GPU only 0.31 seconds.
The GPU is roughly 46x faster than the CPU.

II. TASK 2 : MULTI CLASS CLASSIFICATION

For this task, we decided to run four pretrained
models along with our own model. we ran VGG16,
InceptionResnetv2, Resnet50, Xception and own
model all on default hyper parameters to get base-
lines. Based on the baseline results we decided to
tune three of these models to evaluate on the test
set.

A. VGG16

The first model that we used as a baseline was
the VGG16 based model. we decided to use the
pretrained weights trained on Imagenet and added
our own fully connected layers at the top.

1) Architecture:

• we used a VGG16 pretrained on Imagenet as
our base feature extractor.

• In our first fully connected Dense layer,
we used 256 nodes with the relu activation
function followed by a dropout layer with a
dropout probability of 0.25.

• Our final dense layer had 4 node with the
’softmax’ activation as we are dealing with
a multi class classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.0001 for
100 epochs.The loss function used is binary
crossentropy.



2) Results: The VGG16 model after 100 epochs
had a training accuracy of 79% and a validation
accuracy of 68%. The training loss was 0.55 and
the validation loss was about 0.74

B. InceptionResnetV2

The Second model that we used for a baseline
was the InceptionResnetV2 . we decided to use the
pretrained weights trained on Imagenet and added
our own fully connected layers at the top.

1) Architecture:
• The InceptionResnetV2 is a model that has

164 layers. It is an enhancement of the previ-
ous Inception v2.

• The InceptionResnetV2 brings back the idea
of residual blocks by converting the three in-
ception blocks to ’residual inception’ blocks.

• The InceptionResNetV2 model has a total of
64,168,420 parameters (Trainable: 9,831,684
and Non Trainable: 54,336,736).

• In the first fully connected Dense layer, we
used 256 nodes with the relu activation func-
tion followed by a dropout layer with a
dropout probability of 0.25.

• The final dense layer had 4 node with the
’softmax’ activation as we are dealing with
a multi class classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.0001
for 100 epochs. The loss function used is
categorical crossentropy.

2) Results: The InceptionResNetV2 model after
100 epochs had a training accuracy of 76% and
a validation accuracy of 32%. The training loss
was 0.57 and the validation loss was about 3.86.
This models performance was comparable to the
VGG16 on the training set but had very poor gen-
eralisation. This could be because it uses residual
blocks and those models are generally very data
heavy.



C. ResNet50

The third model that we used for a baseline was
the Resnet50. we decided to use the pretrained
weights trained on Imagenet and added our own
fully connected layers at the top.

1) Architecture:

• In the 1st dense layer that we added on top
of the ResNet50 feature extractor,256 nodes
with the relu activation function followed by
a dropout layer with a dropout probability of
0.25 is used.

• Our final dense layer had 4 node with the
’softmax’ activation as we are dealing with
a multiclass classification problem.

• The model is fitted using the Adam optimizer
with the default learning rate of 0.0001
for 100 epochs. The loss function used is
categorical crossentropy.

2) Results: The ResNet50 model had very good
training accuracy at around 81.5% but poor gener-
alization at 41%. The model had a training loss of
0.3685 and a validation loss of 4.1713 after 100
epochs. however, if we look at the plots, the loss
never looked like converging. Accuracy and Loss:



D. Xception
The fourth model that we used for a baseline

was Xception . We decided to use the pretrained
weights trained on Imagenet and added our own
fully connected layers at the top.

1) Architecture:
• Xception is an adaptation from Inception,

where the Inception modules have been re-
placed with depth wise separable convolu-
tions.

• Firstly, cross-channel (or cross-feature map)
correlations are captured by 11 convolutions.

• Consequently, spatial correlations within each
channel are captured via the regular 33 or 55
convolutions.

• The model does this entirely based on depth-
wise separable convolution layers.

• The Xception model has a total of 46,552,876
parameters (Trainable: 25,691,396 and Non
Trainable: 20,861,480).

• In the 1st dense layer that we added on top
of the Xception feature extractor, we used

256 nodes with the relu activation function
followed by a dropout layer with a dropout
probability of 0.25.

• Our final dense layer had 4 node with the
’softmax’ activation as we are dealing with
a multiclass classification problem.

• We fit the model using the Adam optimizer
with the default learning rate of 0.0001 for
100 epochs. The loss function we used was
categorical crossentropy.

2) Results: The Xception model had very good
training accuracy at around 76% but poor general-
ization at 38.64%. The model had a training loss
of 0.5768 and a validation loss of 2.2823 after 100
epochs.

E. Self Created Model
The last model that we used was one that we

created on our own. We trained it on the given
training data.

1) Architecture:
• We used 2 convolution layers followed by

pooling layers.
• For both our convolution layers, we used 64

filters with a kernel size of (3x3), stride of 1
and no padding.



• In the 1st dense layer, we used 128 nodes
with the relu activation function followed by
a dropout layer with a dropout probability of
0.25.

• In our intermediate dense layer, we used 64
nodes with the ’relu’ activation fucntion fol-
lowed by a dropout layer with a dropout of
0.25.

• The final dense layer had 4 node with the
’softmax’ activation as we are dealing with
a multi class classification problem.

• We fit the model using the Adam optimizer
with the default learning rate of 0.0001 for
100 epochs. The loss function we used was
categorical crossentropy.

2) Results: Our model had a training accuracy
at around 51% validation accuracy at around 52%.
The model had a training loss of 1.1029 and a
validation loss of 0.9131 after 100 epochs. Our
model performed equally for for the training set
and the validation set suggesting that our model
did not overfit. It however had high bias which is
not encouraged.

F. Tuned VGG16
In this section, we decided to tune VGG16

model hyperparameters as it had encouraging base-
lines. For parameter tuning, we decided to use
sklearns GridsearchCV function.We tried different
values for Learning rate, Dropouts and Activation
function and did these over 3 folds. we tried using
early stoppings to make the process faster. The
values that we tried are:

• learning rate: [0.0001,0.001,0.00001]
• activation:[’sigmoid’,’relu’]
• dropout: [0.15,0.20,0.25]

Following resutls from the GridsearchCV, we
found the best hyperparemeters to be:

• learning rate: ’0.0001’
• activation:’sigmoid’
• dropout: ’0.15’

1) Architecture:
• We used the same VGG16 pretrained on Im-

agenet as our base feature extractor.
• In our first fully connected Dense layer, we

used 256 nodes with the sigmoid activation
function followed by a dropout layer with



a dropout probability of ’0.15’ which we
optimized though GridsearchCV.

• Our final dense layer had 4 node with a
’softmax’ activation function.

• The model is fitted using the Adam optimizer
with a learning rate of 0.0001 for 120 epochs.
The loss function we used was categorical
crossentropy.

• We used model checkpoints to save only the
weights which reduced validation loss.

• We then loaded these weights while
evaluating on the test set.

2) Results: After tuning and training the model,
we got a validation accuracy of 63% and a training
accuracy of 82%. The validation loss converged
to 0.7785 and the training loss was very low at
0.4535.

On the test set, we got a accuracy of 72.22%
and a loss of 0.587

3) TSNE Plot: We decided to extract features
from our 1st dense layer and plot the features.
Overall, we can see that the ’COVID19’ and
’Normal’ classes are well separated with a few
Normal patients being classified a s COVID19

positive. We feel this is still acceptable but not
the other way around for this problem. Both the
Pneumonia classes cannot be differentiated well
which probably means they have very similar
features.

The model does a satisfactory job at classify-
ing between Normal, COVID19 and Pneumonia
patients.

G. Tuning our own model
In this section, we decided to tune our own

models hyperparameters. For parameter tuning,
we decided to use sklearn’s GridsearchCV func-
tion. We tried different values for Learning rate,
Dropouts and Activation function and the number
of nodes in our dense layer. We did these over 3
folds. The values that we tried are:

• learning rate: [0.0001,0.001,0.01]
• activation:[’sigmoid’,’relu’]
• dropout: [0.15,0.20,0.25]
• units : [32,64]

Following resutls from the GridsearchCV, we
found the best hyperparemeters to be:

• learning rate: ’0.001’
• activation:’relu’
• dropout: ’0.15’
• units: ’32’

1) Architecture:
• We used the same architecture as we did for

our baseline. We used 2 convolution layers
with 64 filters and filter size of (3x3). We used
a stride of 1 and no padding.

• we followed up our convolution layers with
Max Pooling layers.



• In our first fully connected Dense layer,
we used 128 nodes with the relu activation
function followed by a dropout layer with
a dropout probability of ’0.15’ which we
optimized though GridsearchCV.

• In our second dense layer we had 32 nodes
and a ’relu’ activation function followed by
a dropout layer with a dropout probability of
’0.15’.

• Our final dense layer had 4 node with a
’softmax’ activation function.

• The model is fitted using the Adam opti-
mizer with a learning rate of 0.001 for 120
epochs. The loss function we used was cate-
gorical crossentropy

• we used model checkpoints to save only the
weights which minimized validation loss.

• we then loaded these weights while evaluating
on the test set.

2) Results: After tuning and training the model,
we got a validation accuracy of 56.82% and a train-
ing accuracy of 56.19%. The validation loss con-
verged to 0.4992 and the training loss at 0.9462.

On the test set, we got a accuracy of 41.66%
and a loss of 1.163 Accuracy and Loss:

3) TSNE Plot: We decided to extract features
from our 1st dense layer and plot the features.
There is a visible cluster for the ’Normal’ clus-
ter which can be differentiated from the other 3
classes. however, the model is not able to differ-
entiate among the ’COVID19’ class, the ’Bacterial
Pneumonia’ or the ’Viral Pneumonia’ classes. This
model may not be able to identify the differences
in the features between these 3 classes. This is also
the reason our model has such a poor performance
on the test set.

III. COMPARISONS AND FUTURE SCOPE

A. TASK 1

For task 1, out of the 4 models that we used,
the VGG16 had the best baseline. The VGG19 did
had similar results comapared to VGG16 however,
it had 26% more parameters than the VGG16. For
this task, we decided to use pretrained weights and
hence the complexity of the model did not affect
our computation time too much. however, If we
had to train these models from scratch, the VGG16
would have been much faster.
The Resnet50 had very good training accuracy, the
best among all the models, but it had very low
validation accuracy. The model had low bias and
very high variance which is not desirable. Given
more time, we believe this model could perform
better if trained for more epochs and regularized
more heavily. we would probably also try to use
early stopping while tuning on the validation set
to avoid over training the model. ResNet50 uses
residual blocks and is generally very data hungry.
The final model that we used was our own. It
had the poorest performance among all the models



probably because we tried training it on the train-
ing set itself. It had a lot of parameters(23,935,041)
that had to be learnt and only around 130 images
which is very less for training a model this size. we
believe if we had trained this model on imagenet
and used those weights, it might have done better.
A better architecture could have also helped.

B. TASK 2
For task2, out of the 5 models that we used, the

VGG16 again had the best baselines overall. The
Resnet50 again had a very good performance on
the training set(better than the VGG16) but had
poor generalization on the validation set similar to
task1. We believe this model could be improved if
regularized well. Maybe another layer of dropouts
could have helped or maybe using early stopping
could help avoiding the overfitting on the training
set.
The InceptionResNetV2 and the Xception had a
similar baseline performance. both of them had
around 70%-75% accuracy on the training set and
around 30%-40% accuracy on the validation set.
The InceptionResNetV2 is an adaptation of the
Inception models but they have been reinforced
with residual blocks similar to the ResNet50.
The Xception model uses a similar architecture
as the Inception. Both these models suffer from
overfitting. Given more time, we would like to
do some additional reading about residual blocks
and their impact on overfitting as all 3 models
based on residual blocks that we used, overfit
the data. We believe both these models could be
optimized with stronger regularization. We would
like to try BatchNormalization instead of dropouts
in the future coupled with early stopping while
optimizing these models.
The last model that we used was our own model. It
had the worst performance among all the models.
we suspect this was the case due to the limited
data we had to train this model.


	Task 1 : Binary Classification
	Self Created Model
	Architecture
	Results

	VGG16 base feature extractor
	Architecture
	Results

	VGG19 base feature extractor
	Architecture
	Results

	ResNet50
	Architecture
	Results

	Tuned VGG16
	Architecture
	Results

	TSNE Plot
	CPU vs GPU speedup

	Task 2 : Multi Class Classification
	VGG16
	Architecture
	Results

	InceptionResnetV2
	Architecture
	Results

	ResNet50
	Architecture
	Results

	Xception
	Architecture
	Results

	Self Created Model
	Architecture
	Results

	Tuned VGG16
	Architecture
	Results
	TSNE Plot

	Tuning our own model
	Architecture
	Results
	TSNE Plot


	Comparisons and Future Scope
	TASK 1
	TASK 2


